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J .  Phys. A: Math. Gen. 19 (1986) L923-L926. Printed in Great Britain 

LETTER TO THE EDITOR 

Height probabilities in solid-on-solid models: I 

P J Forrester and George E Andrews? 
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony 
Brook, NY 11794-3840, USA 

Received 26 June 1986 

Abstract. The height probabilities for some infinite sequences of solid-on-solid models are 
given in terms of combinatorial sums for the large but finite lattice. We transform a class 
of these sums to a form suitable for taking the infinite lattice limit. 

The year 1984 saw some exciting events in the study of multicritical phenomena in 
two dimensions. The conformal bootstrap theory of Belavin et a1 (1984) was developed 
by Friedan et a1 (1984) to provide a listing of allowed critical exponents 7 for generic 
multicritical behaviour. At about the same time, Andrews et al(1984) exactly evaluated 
the free energy and one-point functions for an infinite sequence of restricted solid-on- 
solid (RSOS) models. Realising the relationship between the two works, it was observed 
by Huse (1984) that the critical exponents of the RSOS model provide an explicit 
realisation of the critical exponents allowed by conformal invariance for all generic 
n-phase coexistence. 

It is known that, corresponding to a particular central charge in the conformal 
theories, there correspond many possible operator algebras, so the listing of allowed 
critical exponents is not complete (Cardy 1986). Likewise, it is now known that the 
RSOS model is just one of an infinite number of infinite sequences of solvable models 
(Kuniba et a1 1986). It is our purpose in this letter to initiate the evaluation of the 
local height probabilities for these new hierarchies. 

Consider the following class of interaction-round-a-face models. At each site j of 
the square lattice there is an integer height variable 4, 1 s 4 s r - 1. For a given integer 
n ( n  2 2), impose the constraint that nearest-neighbour heights must differ by 

0, * l ,  * 2 , .  . . , *l(n - 1 )  

*1, * 2 , .  . . , *in 
( n  odd) 

( n  even). 

We will denote such sequences of models by RSOS-n. 
For each value of r S 4 the RSOS-2 model has an exact solution manifold, on which 

the Boltzmann weights of the allowed face configurations are parametrised by single 
8, functions (Andrews et a1 1984). In the limits r + a ,  &+a, the Boltzmann weights 
become sinh functions and we obtain the six-vertex (two-state vertex) parametrisation 
of the body-centred solid-on-solid model ( Forrester 1986). 

t Present address: Department of Mathematics, McAllister Building, Pennsylvania State University, Univer- 
sity Park, PA 16802, USA. 
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The RSOS-2 model has different regimes of physical behaviour, denoted by regimes 
I-IV. In regime 111, calculation of the height probabilities on a lattice of size m using 
the comer transfer matrix technique yields the combinatorial sum 

r -1  

nXm(a,  b, C )  = (2) qz?-l kl ik- ’k+21/4  

I,, . . . , /,=1 

where I , ,  Z2, . . . , must satisfy the nearest-neighbour constraint ( 1 )  for n = 2 
(equations (1.5.11)-(1.5.15) of Andrews et a1 (1984)). The end heights I , ,  lmil, I,,, 
are fixed at the values 

1, = a l m + l =  b l m + 2  = c. (3 1 
It has been shown recently by Kuniba et a1 (1986) that the RSOS-3 model admits an 

exact solution manifold for r 3 3. The weights are parametrised as products of two 8, 
functions. We observe that in the limits r +- 00, 1 + 00 this parametrisation reduces to 
the three-state vertex parametrisation of Sogo et a1 (1983). (Explicitly, if p = is the 
nome of the 8, function and U the argument, we consider the limit l / r e ,  
U/& +constant, l l r ,  U, e + O . )  Again we have different regimes of physical behaviour 
to consider. In regime 111, by applying the comer transfer matrix technique, we can 
show that the local height probabilities can be written in terms of the sum (2) for n = 3. 

Kuniba er a1 (1986) conjecture a solvable infinite sequence of Rsos-n ,models for 
each n. This is very plausible, since in the limit T + W ,  l j - 0 0 ,  we regain the n-state 
vertex model of Sogo et a1 (1983), where it is known there is a solvable manifold for 
each n. We conjecture that in regime 111 of the exactly solvable Rsos-n model, 
calculation of the height probabilities from the comer transfer matrix technique gives 
the combinatorial sum “Xm. For n = 4, this can be explicitly verified in the case r + 00 

from the parametrisation of the four-state vertex weights by Sogo et a1 (1983). 
Let us sketch the derivation of the transformation formula necessary to extract the 

m +-CO limit from (2) in the case n = 3. 
We begin by re-analysing our results for the RSOS-2 hierarchy (equations (2.3.5) 

and (2.3.6) of Andrews et a1 (1984)). In the limit r +- 00, then a, b + 00, a - b = constant, 
the sum (2X*m say) can be written as a single Gaussian polynomial: 

r 

We note that zX*, can be specified by defining what we will call the sum index (SI) of 
the permutations of a set. Consider a permutation P of {1ml(-l)m2} (in this set there 
are m1 elements 1 and m, elements -1). Let sr(m,, m,; n )  denote the number of 
permutations P for which 

where P (  m, + mz+ 1) = * l  according to whether we take the plus or minus sign in (4). 
Then 

m + b - a  m - b + a  
,X:(a,  b, b * l ) =  SI ; n)qn/Z. 

? I 2 0  

Comparing (4) and (6) we see that up to a simple factor, the Gaussian polynomial is 
the generating function for the sum index. This result is analogous to that for the 
greater index of the set { l m 1 ( - 1 ) ~ }  (Andrews 1976, theorem 3.7). 
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Now consider 3Xm( a, b, b f 1 )  in the limit r -* 00, then a, b -* 00, a - b = constant 
(let us denote this sum ,X*,) .  Define the sum index s ~ ( m , ,  m2,  m,; n) of the permuta- 
tions P of{lml(-1)"20~} by (5) with m,+  qrep laced  by m , + m 2 + m 3  and P ( m l + m 2 +  
m3 + 1 )  = *l  according to whether we take the plus or minus sign in , X $ ( a ,  b, b * 1 ) .  
Then 

3X*,(a,  b , b * l ) =  ~ 1 ( p + b - u , p , m - b + a - 2 p ; 4 n ) q . / ~  (7) 
g = O  n a O  

where the upper limit on the p summation is the integer part of ( m  - b + a)/2 and we 
have taken b 3 a. 

Consider the sum over n in (7). If the sum index were the greater index, we would 
be able to express it in terms of the q-multinomial coefficient with with three indices 
(the Gaussian polynomial is the q-multinomial coefficient with two indices). We have 
just seen that the sum and greater indices are closely related. We thus set out to express 
the sum over n as a single multinomial coefficient. Working empirically, we found 
instead the result 

s ~ ( p  + b  -a ,  p, m - b + a  -2p; 4r1)q"'~ 
n = O  

(b-a)(b-a*1)/4 ( m - b + a - 2 ~ ) / 4  
= 4  4 

(If the variables of the Gaussian polynomials were both the same, this would be, up 
to a simple factor, a multinomial coefficient.) Note that when 2p = m - b + a, and thus 
the total number of zeros is zero, we regain (4). 

From here, guided by the similarity between zXm and zX*, we make an ansatz for 
, X $  based on the form (7) and (8) for 3 X * , .  This ansatz is used in conjunction with 
the recurrence relations, initial and boundary conditions which uniquely define the 
.Xm (the analogues of equations (2.3.1)-(2.3.4) of Andrews er al (1984)). 

We thus obtain the transformation formulae 

and 

{ h ( a ,  b + 1 ,  b ) - h ( - a ,  b + l ,  b )  1/4+a(u-1)/4 
3xm(a,b, b ) = a a , b + q  

+ h(a ,  6 - 1, b )  - h( -a ,  b - 1,  b ) }  

a(a,  6, b * 1)  = sgn(6 - a ) { r ( b +  b* 1 - 1)/2-a(r- 1)) 
P(a,  b, b +  1 )  = b ( b +  1)/4-ab/2 

P(a,  b, b -  1 )  = b ( b -  1)/4-(b- l)a/2. 

(13) 

(14) 
(15)  
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In (10) Sa,b denotes the Kronecker delta and in (13) the function sgn is defined by 

b a a  
b < a. 

sgn ( b  - a )  = 

Note that when p = ( m - I b - a 1 ) / 2  and p = ( m - l b + a l ) / 2  in g ( a , b , b * l )  and 
g(-a ,  b, b * 1 )  respectively, (9) reduces to 2Xm(a ,  b, b* 1 )  (equations (2 .3 .5 )  and (2.3.6) 
of Andrews et a1 (1984)). 

It remains as a major mathematical project to transform .Xm for general n and 
study the large-m limit. We are pursuing this line of research. 

We thank A Kuniba, Y Akutsu and M Wadati for sending us their work prior to 
publication. This work was partially supported by the National Science Foundation 
Grant No PHY-85-07627. 
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